
www.manaraa.com

A review of electronic engineering design free
software tools

C. Medrano, I. Plaza
EduQTech, EUPT

Teruel, Spain
{ctmedra, iplaza}@unizar.es

M. Castro, F. García-Sevilla, J.D.
Martínez-Calero

UNED - Madrid, Spain
mcastro@ieec.uned.es,

Francisco.Garcia@uclm.es,
josedanielmartinez@gmail.com

Josep Pou Felix, M. Corbalán
EduQTech, EUETIT - UPC

Terrassa, Spain
{pou@eel.,

montserrat.corbalan@}upc.edu

Abstract— In this paper, we review electronic design free
software tools. We have searched open source programs that help
with several tasks of the electronic design flow: analog and digital
simulation, schematic capture, printed circuit board design and
hardware description language compilation and simulation.
Using some rapid criteria for verifying their availability, we have
selected some of them which are worth working with. This work
intends to perform a deeper analysis of free software tools and
select some of them to use in education or in professional
electronic design.

Keywords- electronic design; free software;quality; evaluation.

I. INTRODUCTION
Free software is an increasing phenomenon that has

attracted a lot of attention in academia, industry and among
end-users. Following the definition of the Free Software
Foundation (FSF) [1], free software concerns the users’
freedom to run, copy, distribute, study, change and improve the
software. Beyond its philosophical principles, the way many
free software projects are developed, often against traditional
software engineering practices, is also a research topic [2].

The interest in free software would not have increased
without the success of many projects that are widely used and
accepted [3]. GNULinux and the Apache web server are
probably the most well known, but there are many others: user
applications (e.g., GIMP, OpenOffice), programming
languages (e.g., Perl, Python), internet resources (e.g.,
sendmail, bind), adaptations to embedded systems (e.g.,
OpenMoko, Nokia 770). However, not all free software
programs have reached a high quality level and open source
repositories [4] show many abandoned projects.

Regarding electronic design, the following question arises:
Which is the state of free software tools for electronic design?
Are they useful? The long term goal of the present work is to
answer these questions, evaluating the situation of these tools
and selecting some of them for education or professional use.
In this paper, we present a first review of such tools and
perform a preliminary selection. We also point out the main
weakness detected.

II. OUTLINE
The steps we have followed are outlined in Fig. 1:

• Search for free software tools: we have searched free
software tools that help in typical tasks of the
electronic design flow.

• Rapid test and program selection: we have performed a
rapid evaluation of the programs found. This has
allowed us to select some of them for a further research
and deeper evaluation.

• Analysis of rejections and summary of selected
programs.

Figure 1. Main steps of the present work

III. SEARCH FOR FREE SOFTWARE TOOLS

A. Topics selected
We have searched for tools that are related to the following

tasks:

• Analog simulation (AS): schematic capture with netlist
generation, simulation engines and data visualization.

• Digital simulation (DS).
• Schematic capture (SC).
• Printed Circuit Board (PCB) Design.

1867

https://www.researchgate.net/publication/2479767_Defining_Open_Source_Software_Project_Success?el=1_x_8&enrichId=rgreq-7bf3c0b728e50b2d615b2323a39217b5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDE0ODY5MTtBUzo5OTU0Mzg0MDQ2MDgxNkAxNDAwNzQ0NTExMjQ4

www.manaraa.com

• Hardware Description Language (HDL) design:
compilation, simulation and waveform viewers.

B. Sources of information
We have searched in FSF [1], in classical repositories [4]

and through the Internet using the Google Web search engine.
Examples of keywords used are Electronic Design Automation
(EDA), electrical, electronic, schematic capture, simulation,
HDL, PCB, etc.

C. Programs found
In table I we have listed the number of programs found and

the category they are included in. In some cases, they are
divided into subcategories. In the analog simulation class, the
sum of the programs in the subcategories does not equal the
total in the category because there are integrated environments
that belong to several subcategories at the same time.

TABLE I. NUMBER OF PROGRAMS FOUND AND THEIR CATEGORY

Category Number Subcategory Number

Analog
simulation

(AS)
24

Simulation engine 9
Schematic capture
+ netlist generation 10

Data visualization 10
Digital

simulation
(DS)

13

 Schematic
capture (SC) 22

PCB design
(PCB) 12

HDL design
(HDL) 28

Simulation and
compilation 25

Waveform viewer 3
Total 99

IV. RAPID TEST OF PROGRAMS
Evaluation of software quality is still a controversial issue.

There has been an evolution of this concept and the definition
depends also on the perspective (architecture, source code,
processes or community). ISO/IEC 9126 [5] offers a standard
with six quality characteristic divided into several
subcharacteristics. This quality model has to be adapted to
every program. Other models focus on the free software world,
analyzing their typical aspects: Open Business Readiness
Ration, QSoS [6] and QualOSS [7]. However, applying those
models to all the programs we have found is out of the scope of
the present paper. We first have to pick up some of the
software we have found. Thus, we have adopted a practical
point of view and adopt the role of an electronic designer who
wants to select a set of programs for further research. We have
then specified five items in order to perform a rapid test.

• Is there a stable version?
A stable version would give confidence to software users.
However, this question was not easy to answer.
Traditionally release version 1.0 is the first one delivered to
customers and considered stable. However, many free

software projects follow the “release early, release often”
rule [2], which means that the programs are available to the
public well before they are considered stable. The
Sourceforge repository includes information about the
status of the software (alpha, beta or stable). But other
downloadable programs have not this information.
Therefore, this item was of limited use.

• Can it be easily installed?
If available, Windows versions usually pose no problem.
For Linux users, probably the most interested in this kind of
software, package management systems are the preferred
way to install software because they solve all the
dependencies. We have used the “aptitude” utility in the
Kubuntu 8.01 distribution [8]. If no package is available,
we have tried to compile the program from the source code
and tried to solve the problems that appeared.
• Is the learnability good?
This is probably one of the most important points to attract
new users. We have looked for user’s manuals, “getting
started” guides, wikis or web pages, examples etc. They
should at least allow the user to start working with the tool.
• Can it work with a simple example?
We tried simple examples in order to check that the
program is not only installed, but that can run simple
simulations, draw simple schematics, etc. This is similar to
the idea of the “hello world” program that can be found in
many introductory tutorials of programming languages.
• Is it likely to be maintained in the future?
Any potential user should be interested in the project future
and the probability that it will be debugged, improved,
updated or extended. To answer this question, we paid
attention to the frequency of new versions, the number of
developers, the number of messages in mailing lists or the
news that appeared in the corresponding sections.
The goal of this five item test is to determine whether or not

it is worth evaluating the program in depth.

V. ANALYSIS OF REJECTIONS
In this section, we analyze the reasons that led us to reject

many of the projects found. Table II summarizes the results.
The terms used in the table together with further comments are
explained in the next paragraphs.

TABLE II. MAIN REASONS TO REJECT PROGRAMS

Problem AS DS SC PCB HDL Total
Abandoned 8 4 13 6 8 39

Does not install 1 0 1 0 3 5
Poor learnability 3 3 2 0 1 9

Failure to work with
simple examples 2 0 1 0 1 4

Other 3 3 1 3 7 17
Total 17 10 18 9 20 74

In the group of abandoned projects we have included
projects that have had no activity (news, releases) for more

1868

www.manaraa.com

than two years. In this group there are also projects that classify
themselves as in ‘planning’ state. However, this state coincides
with a lack of activity, at least in the cases we found. As can be
deduced from the table, there is a high number of abandoned
projects, a 53 % of the total of rejections. This is clearly a
waste of effort. New developers should adhere one of the
lesson of [2]: “Good programmers know what to write. Great
ones know what to rewrite (or reuse)”.

With respect to the installation, many of the programs are
available as Kubuntu packages, what makes the installation
very easy. For the rest, source compilation is possible if the
libraries it depends on are installed previously. We have been
able to compile most programs successfully. A few of them
showed compilation errors, such as undefined symbols, which
prevented us from getting an executable.

There are not many programs that fail when dealing with
simple examples like an RC circuit, HDL code with basic
logic, etc. At least, the projects that are not abandoned and that
can be installed are able to perform some operations.

Poor learnability is associated with a lack of
documentation. Unfortunately, there are nine projects that are
rejected mainly due to the poor documentation. In many cases
they are hosted by attractive web pages, they are updated
regularly and they can be installed without problems. But the
section documentation is still under construction, or shows a
similar message, so the newcomer hits the wall when trying to
build up his own examples. From the user point of view, this is
really disappointing. Electronic designers are not always
programming experts and looking into the source code can be
very hard.

The row entitled “Other” in table II accounts for other
reasons to reject a program that are not in the previous
categories. In some cases the programs are very basic, e.g. only
a few gates in digital simulation, or they are oriented towards
kinds of design not considered here, e.g. full custom design.
There are also many examples of exotic approaches. For
instance, programs that help to create modules for other tools,
to debug or to write code. Integration of Spice-like simulation
or hardware description with general purposes languages (Tcl,
Ruby, Python) is a key point of several projects. Although they
are remarkable efforts, we have stuck to the typical approaches
to the electronic design topics considered in this paper.

We should mention that we have rejected two popular
programs. Both of them are active and have been developed for
many years. The first one is Xcircuit [9]. We could not make
the examples work due to a segmentation fault. However this
can be due to a packaging problem with Kubuntu and other
Linux distributions should be tested. We could not compile the
source code successfully either. The second one is Alliance
[10], a set of CAD tools for VLSI design that includes a VHDL
compiler and simulator. There is no package available in
Kubuntu, and we also failed to compile the source code. This
should be further researched.

VI. SELECTED PROGRAMS
The number of programs that we have selected is shown in

table III .

TABLE III. SUMMARY OF NUMBER OF PROGRAMS SELECTED

Category Programs
selected Total %

Analog simulation 7 24 29
Digital simulation 3 13 23
Schematic capture 4 22 18

PCB design 3 12 25
HDL 8 28 29
Total 25 99 25

A. Analog simulation
We have found two motor simulations, ngspice [11] and

gnucap [12]. They are both command line programs. Ngspice
is based on the well-known Spice3 simulator originated at the
University of California. Since 1999, its code has been bug-
fixed, cleaned, ported to the GNU/Linux platform and
improved with models and simulation options. Gnucap is the
Gnu Circuit Analysis Package. It is not based on Spice and the
engine is designed to do true mixed-mode simulation.

Gwave [13] and Kjwaves [14] are tools to view analog data
from the output of simulations. Gwave is part of the gEDA
toolkit. Kjwaves is written in Java and has a nice user interface.

Schematic programs that can output Spice netlists are also
considered in this section. Gschem [13] is a graphical tool
which is part of gEDA to facilitate the input of components.
Once the schematic file and the required symbols are ready,
they can be converted into netlists using the gnetlist [13]
command. Kicad [15] is an open source program for the
creation of electronic and schematic diagrams and printed
circuit boards. It has an option for the creation of Spice netlists.

Finally, we have found an integrated environment which
has its own flavour. It is called Quite Universal Circuit
Simulator, Qucs [16]. It can simulate analog and digital
circuits. It deviates from typical Spice-like simulators. The
entry is graphical and the simulation itself can be seen as an
embedded object in the main window, Fig. 2. The user
documentation is very poor, but there are some specific
tutorials that allow new users to run simple examples. Despite
the documentation, we have kept this project as a valuable tool,
due to its nice and intuitive graphical interface.

Figure 2. Screenshot of Qucs, taken from [16]

1869

www.manaraa.com

B. Digital simulation
Three projects gave us enough confidence in this section:

Tkgate [17], LogiSim [18] and Qucs. Tkgate is an event driven
digital circuit simulator with a tcl/tk-based graphical editor. It
is a mature project that started at Carnegie Mellon University
in 1987. LogiSim is written in Java and intends to be an
educational tool for designing and simulating digital logic
circuits. Qucs can not only perform analog simulation, as
explained in the previous section, but also digital simulation. It
is in fact based on the VHDL engine FreeHDL [19], but the
user can simulate directly from a schematic entry without
entering any VHDL code.

C. Schematic capture
Four programs have passed our rapid test. Three of them

have already been reported in previous sections (gschem,
Kicad, Qucs). The fourth one is TinyCAD [20]. It is a simple
program that can print your diagrams or transform them into
PNG images. It can be also used to output netlist for Spice or
PCB programs. However, Spice output requires the
introduction of many parameters by the user, which makes this
process painful. In addition, only commercial PCB formats are
possible as outputs, except for FreePCB (see next section).

D. PCB design
This is the category in which we have found fewer

programs and as a consequence, fewer programs passed our
rapid tests. This is probably due to the higher difficulty of the
user interaction programming. The three programs are PCB
[13], FreePCB [21] and Kicad [15]. PCB is now associated
with the gEDA tool suite. Therefore, a schematic entry with
gschem can be the first step of a printed circuit board design.
The schematic file can be converted to a netlist compatible
with PCB using the command gnetlist. PCB is a twenty year
old application, which has been enhanced with Gerber
generation, autorouter and GTK port. FreePCB was designed
to be easy to use and ease to learn. It has only Windows
version. In principle, netlist has to be entered semi-manually
with a text editor. Since 2008, a utility written by a user allows
converting TinyCad netlist into PADS-PCB netlists suitable for
FreePCB. Kicad also allows the user to design a printed circuit
board, starting from a schematic capture. All the steps of the
design flow are integrated into a single graphical interface,
much as the manner in which some commercial programs do.

E. HDL compilation, simulation and data visualization
We have found five compiler and simulator tools for HDLs.

Icarus [13] is a command line verilog compiler, which is now
associated with gEDA. In fact, there are two main commands:
iverilog, which compiles the code, and vvp, which is the
simulation run time engine. The ouptut of the simulation is a
VCD file, but other waveform dumps are available. Typically,
the user has to include a test bench within its program. Ghdl
[22] acts in a similar manner, but with VHDL code. It is a
command line compiler that can analyze or execute a design
(test benches) depending on the flags used. In the latter case,
VCD file format output is possible. Veriwell [23] is another
command line verilog compiler which outputs VCD files.
While last version is recent, documentation is worse than that

of ghdl or icarus. Signs [24] can be used either as a command
line or as an Eclipse plugin [25] for hardware design and
simulation. At the moment, VHDL is the main language.
Eclipse defines itself as an open development platform
comprised of extensible frameworks, tools and runtimes for
building, deploying and managing software across the
lifecycle. It was hard to make it run the examples of the Signs
tutorial, but this is probably due to our inexperience with the
Eclipse environment. On the other hand, Signs has an
integrated interface, Fig. 3, which is closer to commercial tools.
The last compiler we have found is freeHDL [19]. Although
the home web page has some characteristics of an abandoned
project, such as empty pages and old documentation, it is the
backend simulator used by Qucs, which is a quite active
project. Qucs now accepts user written VHDL code in digital
simulations. The results of a simulation are embedded as in
Fig. 2.

Two waveform viewers are specific to digital simulation:
GTKwave [26] and Dinotrace [27]. Both of them accept VCD
and other file formats. Dinotrace comes with an interface to
Emacs which allows source code and log files to be annotated
with the values of signals.

Figure 3. Screenshot of Signs, taken from [24]

VII. CONCLUSIONS AND FUTURE WORK
We have searched for free software tools that help in some

tasks of the electronic design flow. Then, we have performed a
rapid check and test of the programs in order to select which
ones are worth continuing working with. We have found that
about 39% of the projects are abandoned. On the positive side,
we have found that there are several programs that cover each
of the tasks considered in this study: analog simulation, digital
simulation, schematic capture, PCB design and HDL design.
Thus, we think that efforts should focus on improving existing
projects, rather than on creating new ones, unless new projects
include original approaches.

Generally speaking, documentation is a weak point. We
have rejected about 9% of the projects for this reason. Even
within the projects we have selected, we feel that user
information should be improved. Sometimes we made the
examples work with a mixture of documentation and intuition.
New users should have a clear view of what software can do
and where to obtain more information. However, we

1870

www.manaraa.com

acknowledge that documentation is slowly improving in the
projects we know for some years.

Another issue is the fact that people are not used to work
with the GNU/Linux operating system and they are unwilling
to change their operating system. One quick way to sort this
out is by using virtualization. It is possible to use programs like
VirtualBox [28] and VMWare [29] that allow users to work
with different operating systems at the same time. This is a
great way to try and use these free software programs that
otherwise people would refuse because of the nuisance of
installing and configuring GNU/Linux and the programs. It is
also a great way to create an environment with the operating
system and the installed programs that users can carry with
them in portable media like USB memories.

In future, we plan to evaluate the selected programs in
depth. For that purpose, we will use a quality model. We intend
to apply a model based on the ISO/IEC 9126 standard [5] and a
model specific to free software programs [7]. We want to
derive from this study which is the suitability of the programs
for real-world designs and where the efforts should be focused
in order to improve them.

REFERENCES
[1] Free Software Foundation, http://www.fsf.org/ , accessed on August

2009.
[2] Eric S. Raymond, The Cathedral and the Bazaar,

http://www.catb.org/~esr/writings/cathedral-bazaar/, accesed on October
2009.

[3] K. Crowston, H. Annabi, and J. Howison, Defining open source
software project success. In Proceedings of 24th International
Conference on Information Systems, Seattle, WA, USA, December
2003.

[4] Software repositories, http://sourceforge.net/, http://freshmeat.net/,
accesed on August 2009.

[5] International Standard ISO/IEC 9126-1, Software engineering-Product
quality-Part1: Quality model.

[6] J.C. Deprez, S. Alexandre, Comparing Assessment Methodologies for
Free/Open Source Software: OpenBRR and QSOS, Lecture Notes in
Computer Science, Vol. 5089, pp 189-203, 2009.

[7] Quality in Open Source Software, http://www.qualoss.org/ , accessed on
October 2009.

[8] Kubuntu Linux distribution, http://www.kubuntu.org/, accessed on
October 2009.

[9] Xcircuit web page, http://opencircuitdesign.com/xcircuit/, accessed on
October 2009.

[10] Alliance web page, http://www-asim.lip6.fr/recherche/alliance/,
accessed on October 2009.

[11] Ngspice web page, http://ngspice.sourceforge.net/history.html, accessed
on October 2009.

[12] Gnucap web page, http://www.gnu.org/software/gnucap/, accessed on
October 2009.

[13] gEDA web page, http://www.gpleda.org/index.html, accessed on
October 2009.

[14] Kjwaves web page, http://sourceforge.net/projects/kjwaves/, accessed on
October 2009.

[15] Kicad web page, http://www.lis.inpg.fr/realise_au_lis/kicad/, accessed
on October 2009.

[16] Qucs web page, http://qucs.sourceforge.net/index.html, accessed on
October 2009.

[17] Tkgate web page, http://www.tkgate.org/ , accessed on October 2009.
[18] Logisim web page, http://ozark.hendrix.edu/~burch/logisim/ , accessed

on October 2009.

[19] FreeHDL web page, http://freehdl.seul.org/ , accessed on October 2009.
[20] TinyCAD web page, http://tinycad.sourceforge.net/, accessed on

October 2009.
[21] FreePCB web page, http://www.freepcb.com/, accessed on October

2009.
[22] GHDL web page, http://ghdl.free.fr/ , accessed on October 2009.
[23] VeriWell web page, http://sourceforge.net/projects/veriwell/, accessed

on October 2009.
[24] Signs web page, http://www.iti.uni-stuttgart.de/~bartscgr/signs/,

accessed on October 2009.
[25] Eclipse web page, http://www.eclipse.org/org/, accessed on October

2009.
[26] GTKWave web page, http://gtkwave.sourceforge.net/, accessed on

October 2009.
[27] Dinotrace, http://www.veripool.org/wiki/dinotrace, accessed on October

2009.
[28] VirtualBox, http://www.virtualbox.org/, accessed on October 2009.
[29] VMWare, http://www.vmware.com, accessed on October 2009.

1871

https://www.researchgate.net/publication/2479767_Defining_Open_Source_Software_Project_Success?el=1_x_8&enrichId=rgreq-7bf3c0b728e50b2d615b2323a39217b5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDE0ODY5MTtBUzo5OTU0Mzg0MDQ2MDgxNkAxNDAwNzQ0NTExMjQ4
https://www.researchgate.net/publication/2479767_Defining_Open_Source_Software_Project_Success?el=1_x_8&enrichId=rgreq-7bf3c0b728e50b2d615b2323a39217b5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDE0ODY5MTtBUzo5OTU0Mzg0MDQ2MDgxNkAxNDAwNzQ0NTExMjQ4
https://www.researchgate.net/publication/2479767_Defining_Open_Source_Software_Project_Success?el=1_x_8&enrichId=rgreq-7bf3c0b728e50b2d615b2323a39217b5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDE0ODY5MTtBUzo5OTU0Mzg0MDQ2MDgxNkAxNDAwNzQ0NTExMjQ4
https://www.researchgate.net/publication/2479767_Defining_Open_Source_Software_Project_Success?el=1_x_8&enrichId=rgreq-7bf3c0b728e50b2d615b2323a39217b5-XXX&enrichSource=Y292ZXJQYWdlOzIyNDE0ODY5MTtBUzo5OTU0Mzg0MDQ2MDgxNkAxNDAwNzQ0NTExMjQ4

